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Abstract—Although deep convolutional neural networks have
achieved satisfactory performance in many medical image
segmentation tasks, a considerable annotation challenge still
needs to be solved, which is expensive and time-consuming
for radiologists. Most existing popular semi-supervised methods
mainly impose data-level perturbations (e.g., rotation, noising) or
feature-level perturbations (e.g., MC dropout) on unlabeled data.
In this paper, we propose a novel semi-supervised segmentation
strategy with meaningful perturbations at the feature level to
leverage abundant useful information naturally embedded in
the unlabeled data. Specifically, we develop a dual-task network
where the segmentation head produces multiple predictions with a
perturbation module, and the reconstruction head further utilizes
the semantic information to enhance segmentation performance.
The proposed framework subtly perturbs the network at the
feature-level to generate predictions which should be similar and
consistent. However, enforcing them roughly to be consistent
at all pixels harms stable training and neglects much delicate
information. To better utilize those predictions and estimate the
uncertainty, we further propose feature-perturbed consistency to
exploit reliable regions for our framework to learn from. Extensive
experiments on the public BraTS2020 dataset and the 2017 ACDC
dataset confirm the efficiency and effectiveness of our method.
In particular, the proposed method demonstrates remarkable
superiority in the segmentation of boundary regions. The project
is available at https://github.com/youngyzzZ/SFPC.

Index Terms—Semi-supervised learning, Uncertainty estimation,
Image segmentation.

I. INTRODUCTION

Automated semantic segmentation is a crucial and funda-
mental task in medical image analysis and state-of-the-art
performance in various segmentation tasks has been achieved
by fully supervised learning approaches [1]–[6]. However,
fully supervised learning approaches require sufficient and
precise annotations to train models for satisfactory performance.
Acquiring such a large-scale dataset with pixel-wise annotation
is often challenging because it is expensive and time-consuming.
To overcome the annotation scarcity, a promising approach is
to adopt semi-supervised learning, which typically utilizes a
combination of a limited set of labeled samples and an adequate
set of unlabeled ones for effective model training.

Considerable efforts have been devoted to reducing the
annotation cost by efficiently leveraging unlabeled data to
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improve the segmentation performance in the semi-supervised
community [7]–[11]. Existing semi-supervised methods can
be broadly classified into three categories. The first category
refers to those methods that generate pseudo labels for
unlabeled images and consider them as ground-truth labels
to leverage more information about unlabeled images [12]–
[14]. The second category refers to those consistency-based
methods [15]–[19] that impose small perturbations to inputs
to obtain predictions with subtle differences. Those methods
are based on the assumption that the predictions from the
model should be consistent under different input perturbations.
For instance, Yu et al. [17] introduced an uncertainty-aware
method for left atrium image segmentation, where the teacher
model generates more reliable labels for student models
to learn from and simultaneously estimates the uncertainty
of the label. Li et al. [20] and Wang et al. [21] further
investigate the shape constraints via introducing the signed
distance map and the signed distance field respectively. Wu
et al. [22] designed a mutual consistency network to use the
unannotated images by encouraging the predictions of three
slightly different decoders to be consistent. With the remarkable
improvement achieved by consistent regularization [23], [24]
methods, Luo et al. [25]. proposed a pyramid-prediction
network with uncertainty rectified pyramid consistency for
lesion segmentation, but the predictions generated from the
shallow layers tend to be coarse and imprecise. The third cate-
gory refers to several powerful similarity learning approaches,
such as contrastive learning, which have been employed in
semi-supervised learning [26], [27], in which a classification
model with powerful feature extraction capabilities is pre-
trained and then effectively transferred for a segmentation
task. For example, Gu et al. [28] proposed a cross-domain
contrastive learning strategy to encourage extracting domain
invariant features, meanwhile introducing a self-ensembling
mean-teacher framework to exploit unlabeled target domain
images with a prediction consistency constraint. Hu et al. [29]
designed a supervised local contrastive loss that leverages
limited pixel-wise annotation to force pixels with the same label
to gather around in the embedding space for better performance.
Chaitanya et al. [30] presented a local contrastive loss to
learn good pixel-level features useful for segmentation by
exploiting semantic label information obtained from pseudo-
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labels. Nevertheless, methods that rely on contrastive learning
necessitate meticulous design of upstream tasks and substantial
volumes of data for training an effective feature extractor.

Most existing consistency-based methods generate multiple
predictions relying on network architectures such as multiple
decoders, pyramid structure or MC dropout, without consid-
ering that perturbations at the feature level could result in
disparate model outputs. In this work, we first propose a novel
semi-supervised framework with a feature-level perturbation
for medical image segmentation, aiming to leverage more
information from unlabeled data via uncertainty estimation.
The proposed network is composed of one shared encoder and
two slightly different decoders. Specifically, a semantic-level
perturbation module is integrated into the segmentation decoder,
which enables our model to generate a batch of predictions
with slight differences. Then, the statistical discrepancy of
predictions for a certain input is used to estimate the pixel/voxel-
level uncertainty. In addition, a reconstruction task is introduced
to help the segmentation branch contain and capture more
structural information. We also design a new feature-perturbed
consistency training scheme. Our main contributions are
summarized as follows:

• We propose a novel Feature-Level Perturbation Module
(FLPM) to explore the abundant useful information of
unlabelled medical images.

• We design a feature-perturbed consistency to emphasize re-
liable predictions and weaken unreliable ones for efficient
training.

• Extensive evaluations on both two-dimensional and three-
dimensional datasets demonstrate the efficacy of our
method, with new state-of-the-art performance achieved in
semi-supervised segmentation, especially in the boundary
regions.

II. METHOD

This study aims to develop a general semi-supervised learn-
ing framework which can utilize plenty of unlabelled training
data to help train a three- or two-dimensional segmentation
model. Here a novel feature-level perturbation strategy is
proposed to help the model effectively utilize unlabelled
training data during semi-supervised learning.

A. The overall semi-supervised learning framework

An overview of the proposed semi-supervised learning (SSL)
framework is illustrated in Figure 1. The architecture of the
framework contains an encoder E, a decoder G1 for segmen-
tation, and an auxiliary decoder G2 for reconstruction. Both
decoders share the same encoder E. Specifically, a semantic-
level perturbation module is included in the segmentation
decoder G1 for unsupervised data during model training
(Figure 1). With multiple times of feature perturbations and
the corresponding segmentation prediction outputs for each un-
labelled input image, an innovative semantic-level consistency
loss for unsupervised data is designed by enforcing the feature-
perturbed prediction results to be consistent. Such consistency
loss is expected to help train a more robust segmentation model.
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Fig. 1: Overview of the feature-perturbed semi-supervised seg-
mentation framework. Two complementary tasks are performed.
The feature-level perturbation module (FLPM) is seamlessly
integrated into the segmentation decoder. Skip connection
between each stage of the encoder and the corresponding
stage of each decoder is omitted for clarity.

On the other hand, the auxiliary reconstruction task (Figure 1,
lower right) is expected to help the shared encoder E achieve
more powerful encoding capability which in turn would benefit
the segmentation task.

B. Feature-level perturbation

The idea of perturbing features is inspired by the recently
proposed method MaxStyle [31] which shows that different
linear transformations of the same feature maps may generate
synthetic images with different degrees of contrast. Different
from MaxStyle which is developed to generate various styles
of synthetic data from the auxiliary decoder for improving
model’s out-of-domain (OOD) robustness, the proposed feature
perturbation here is performed at one top-level layer of the
segmentation decoder to help the model effectively utilize
unlabelled data in semi-supervised learning (Figure 2). For-
mally, for each unlabelled training data xj , denote by fj,c the
corresponding c-th channel of the feature map output from a
pre-determined (e.g., second last convolutional) layer in the
decoder G1, and m(fj,c) and σ(fj,c) respectively the mean and
standard deviation of all elements in fj,c. Then, fj,c can be
randomly perturbed by a linear transformation of its normalized
version f̄j,c =

fj,c−m(fj,c)
σ(fj,c)

as below,

f̂j,c = γj,c · f̄j,c + µj,c (1)
γj,c = σ(fj,c) + ϵ ·∆σc (2)
µj,c = m(fj,c) + ϵ ·∆µc (3)

where γj and µj,c are slightly perturbed version of the standard
deviation σ(fj,c) and the mean m(fj,c), respectively. The
perturbations are controlled respectively by the estimated
standard deviations (∆σc and ∆µc) of σ(fj,c) and m(fj,c)
over a mini-batch of unlabelled training images (including xj)
during model training, and by a randomly sampled scale ϵ
from a uniform distribution within the range [−τ, τ ]. ∆σc and
∆µc can help control the perturbations within a reasonable
range such that any perturbed feature map f̂j,c is semantically
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Fig. 2: The Feature-Level Perturbation Module (FLPM). Means
and standard deviations at both the instance and batch levels
are applied to each feature map at a top convolutional layer
for each image within a mini-batch.

meaningful. Note that the same scale variable ϵ is used across
all feature channels ({c}) such that all channels of feature maps
have the same level of perturbation. The perturbed feature
maps are finally fed to the subsequent convolutional layer(s),
resulting in the segmentation probability output for the specific
feature-level perturbation of the input xj .

C. Feature-perturbed consistency for semi-supervised learning

In semi-supervised learning, one widely used strategy is to
design a consistency loss on unlabelled training data. The basic
idea is to enforce the model to generate similar outputs for two
or more transformed versions of the same input. The perturbed
feature maps and associated segmentation output probabilities
here provide a natural way to design the consistency loss. In
detail, let Du = {xj , j = 1, . . . , J} denote the unlabelled
training set containing J unlabelled images and each image
contains K elements (pixels or voxels). For the j-th training
unlabelled data xj ∈ Du, suppose M independent perturbations
are performed at the feature level as described above, resulting
in M output probability maps from the segmentation decoder
G1. Let {pj,k,m,m = 1, . . . ,M} represent the M output
probability vectors for the k-th element of the input xj .
The consistency loss based on feature perturbations can be
represented as

Lu =
1

J ·K

J∑
j=1

K∑
k=1

g(pj,k,1, . . . ,pj,k,M ) , (4)

where the consistency measurement g(·) can be any reasonable
function measuring the consistency (often similarity) between
all the M outputs {pj,k,m,m = 1, . . . ,M} for each image
element. Inspired by the recent work [25], we designed the
consistency measurement function as

g(pj,k,1, . . . ,pj,k,M ) =
1

M

M∑
m=1

ωj,k,m∥pj,k,m − p̄j,k∥∑M
m=1 ωj,k,m

, (5)

where p̄j,k is the average probability vector over all the M vec-
tors {pj,k,m,m = 1, . . . ,M}, and ωj,k,m = exp{−h(pj,k,m)}
with h(pj,k,m) being the entropy of the discrete probability
pj,k,m. The term ∥pj,k,m−p̄j,k∥ represents the Lp norm (p = 1
or 2) of the difference between a single output prediction pj,k,m

and the averaged prediction p̄j,k. Therefore, minimizing this
term would enforce the model to have similar predictions for
all the M perturbed features from the same input data. On the
other hand, entropy is a measurement of prediction uncertainty,
and larger entropy would lead to smaller weight ωj,k,m. This
will help the consistency measurement function pay more
attention to confident predictions rather than unconfident (i.e.,
uncertain) ones, and enforce that the confident predictions
should be consistent. This is reasonable because there are often
unconfident predictions around the boundary of regions.

The overall semi-supervised learning loss function can be
then designed as

L = Ls + λ1Lu + λ2Lr , (6)

where Ls is supervised loss (e.g., cross-entropy loss) only
on the labeled training set, and Lr is the reconstruction loss
(with L2 norm) from the decoder G2 on both the labeled and
unlabelled sets. λ1 and λ2 are two coefficients to balance the
there loss terms. Once the model is well trained, the encoder
E and the segmentation decoder G1 are used as a UNet model
for segmentation of any new image during inference, where
feature perturbation is not necessary.

III. EXPERIMENT

A. Datasets and evaluation metrics

In this study, we evaluate our method on the public datasets,
BraTS2020 for whole brain tumor segmentation and 2017
ACDC for cardiac segmentation. The BraTS2020 [32] dataset
contains 496 subjects, where 380, 26 and 90 subjects are
assigned scans for training, validation and testing respectively.
Note that the T2-FLAIR modality with isotropic 1mm3

resolution is adopted for our experiments. Each instance is
normalized by its channel-wise means and standard deviations.
The 2017 ACDC [33] dataset has 100 subjects, from which 75,
5 and 20 subjects are randomly selected for training, validating
and testing, respectively. The intensity of each scan is re-
scaled to [0, 1]. For semi-supervised partitions, 10% or 20% of
training images were randomly selected as labeled samples and
the remaining ones as unlabeled. To quantitatively assess the
performance, three common evaluation metrics are adopted, i.e.,
Dice Similarity Coefficient (DSC), 95% Hausdorff Distance
(95HD) and the Average Surface Distance (ASD).

B. Implementation details

Our framework is implemented by PyTorch and trained with
two NVIDIA GeForce 3090 GPUs with 24 GB memory. The
whole neural network is updated by an SGD optimizer (weight
decay 1e-4, momentum 0.9) for 6000 iterations, with an initial
learning rate of 0.01 decayed by 0.1 every 2500 iterations. The
batch size was 8, consisting of 4 labeled images and 4 unlabeled
images. We randomly cropped 112×112×112 sub-volumes as
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Fig. 3: Visual comparisons between the proposed method (last two columns) and strong baseline methods (second to fourth
column) on two representative images from BraTS2020. During training, 10% training samples were annotated. Green and blue
contours denote boundaries of the predicted and the ground-truth lesion regions, respectively. Second and fourth row (in red):
view of the segmented 3D lesions. Last column: the prediction uncertainty for each pixel using entropy.

the network input for 3D volumes and resized 256×256 as the
input for 2D slices. Data augmentation was employed to avoid
over-fitting, containing random cropping, flipping and rotation.
The final segmentation results of 3D volumes were obtained
utilizing a sliding window strategy. For hyper-parameter setting,
M was set to 4, and τ was set to 0.1 for subtle perturbations at
semantic level. λ1 was an elaborately designed time-dependent
Gaussian warming up function [17], [34] to balance the
weight between supervised and unsupervised learning stably,
which was defined as λ(t) = ωmax · e−5(1− t

tmax
)2 , where

ωmax denotes the final regularization weight, t is the current
training round and tmax denotes the maximal training round.
According to the relevant study [17], ωmax was set to 0.1 for
all experiments. λ2 was simply set to 0.5.

C. Comparison with other semi-supervised methods.

To demonstrate the superiority of the proposed method in
semi-supervised learning, we compared the lesion segmentation
ability of our method with several state-of-the-art methods
including nnU-Net [35], SASSnet [20], UAMT [17], Tri-
UMT [21], DTC [15], CoraNet [24], MC-Net [22], PLCT [30],
and URPC [25]. It is worth noting that only nnU-Net is trained
in a fully supervised manner as the performance upper bound.

Table I shows the quantitative results on BraTS2020 dataset
with different labeled sample proportions of the training set. As
observed, our proposed method outperforms all the compared
semi-supervised methods with the highest DSC (84.83% and
86.35%) and lowest 95HD (10.79 and 8.64) respectively in
two different settings. Compared with the strongest baseline
URPC, the absolute improvement by the proposed method is
respectively 0.75% and 0.74% in DSC, 0.77 and 0.27 in 95HD
and 0.21 and 0.18 in ASD. Besides, when less labeled samples
are utilized during training, our method leads to a higher
superiority, demonstrating our method effectively leverages
the unlabeled scans for performance gains. As illustrated in
Figure 3, our method (fifth column) can more accurately locate
the ambiguous regions (pointed by yellow and blue arrows in
2D and 3D views, respectively) and segment edge regions more
accurately compared with other baselines (second to fourth
column) on the BraTS2020 dataset. The pixel-level prediction
uncertainty from our method (last column) can well indicate
the challenging regions for segmentation, from which we can
see the uncertain regions are mainly around lesion boundaries.
Similar results were obtained on 2017 ACDC dataset. As
Table I (right half) shows, our method outperforms all the strong
semi-supervised baselines on all the three metrics. Figure 4



TABLE I: Quantitative comparisons with other state-of-the-art methods on BraTS2020 and 2017 ACDC datasets. ↑ indicates
that larger values are better and ↓ indicates that smaller values are better.

Method % scans used BraTS2020 (3D) 2017 ACDC (2D)
Labeld Unlabeld DSC(%) ↑ 95HD(mm) ↓ ASD(mm) ↓ DSC(%) ↑ 95HD(mm) ↓ ASD(mm) ↓

SASSNet [20] 10 90 82.16 14.86 4.15 84.26 6.08 1.76
UAMT [17] 80.88 17.63 6.86 81.32 13.17 3.77

Tri-U-MT [21] 82.70 15.26 3.62 83.71 7.54 2.73
DTC [15] 81.86 16.31 3.67 82.43 8.82 3.15

CoraNet [24] 81.29 13.97 3.96 84.17 6.18 2.41
MC-Net [22] 83.75 13.55 3.34 86.55 7.01 2.13
PLCT [30] 83.51 13.74 3.62 86.48 6.69 2.32
URPC [25] 84.08 11.56 3.28 84.72 5.12 1.64

Ours 84.83 10.79 3.07 87.52 4.96 1.33

SASSNet [20] 20 80 84.67 9.41 2.64 86.98 5.36 2.52
UAMT [17] 84.86 12.21 2.19 85.62 9.31 1.53

Tri-U-MT [21] 85.02 8.83 3.16 87.04 5.62 1.63
DTC [15] 84.82 12.69 3.43 86.13 6.28 2.31

CoraNet [24] 84.37 9.05 2.62 86.32 6.45 2.21
MC-Net [22] 85.17 9.72 3.01 88.35 5.76 1.92
PLCT [30] 85.38 8.72 2.94 88.26 5.84 2.11
URPC [25] 85.61 8.91 2.55 87.18 5.29 1.61

Ours 86.35 8.64 2.37 89.13 5.09 1.48
nn-UNet 100 0 89.29 7.97 1.83 92.12 1.73 0.52

demonstrates two representative segmentation results from our
method (sixth column) and the strong baselines (third to fifth
column), again confirming the more accurate segmentation
performance particularly around region boundaries.

Fig. 4: Visual comparisons between the proposed method (last
two columns) and strong baselines (third to fifth column) on
two representative images from 2017 ACDC dataset. 10%
training samples were annotated for model training. Second to
sixth column: different gray values denote different types of
segmented regions.

It is worth noting that the seemingly small difference in
dice score (DSC) between our method and the strong baselines
are probably because DSC is a metric based on the whole
segmentation regions, and current strong baselines already
exhibit satisfactory performance in segmenting the main region
of interest. However, it remains challenging for those methods
to accurately segment the boundary regions. Actually, when
evaluated only around the boundary regions, defined as the band
with a width of 10 pixels through boundary pixel expansion, our
method has a more significant performance gain, outperforming
the best baseline PLCT by 12.57% and 15.38% in DSC
respectively on the BraTS2020 and 2017 ACDC datasets
(Figure 5).

D. Sensitivity study

Hyper-parameter M : M controls the number of predictions,
which plays a vital role in stable training and uncertainty
estimation. As demonstrated in Fig. 6, when varying the value
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Fig. 5: Performance on boundary regions from our method and
strong baselines on BraTS2020 and 2017 ACDC datasets, with
10% labeled images used in training.

of M in a large range (e.g., [4, 8]), the performance of our
method is stably and better than that of the best baseline (dashed
lines) on both datasets in all three metrics. This confirms that
our method is insensitive to the choice of hyper-parameter M .
Hyper-parameter λ2: While the coefficient λ1 in the loss
function is automatically adjusted over training iterations, the
choice of the other coefficient λ2 could affect the performance
of our method. By varying value of λ2 from 0.1 to 2.0,
we observed that our method performs stably well within
a large range [0.5, 2], where our method always outperforms
the strongest baseline (dashed lines) in both semi-supervised
settings (Figure 7). The decreased performance with very small
λ2 values (e.g., 0.1) is probably due to the decreasing effect
of the reconstruction decoder on performance boosting when
λ2 is too small.
Hyper-parameter τ : To achieve multiple meaningful segmen-
tation results for each input image, our method applies a
sensible perturbation to the feature layer, with the magnitude
of the perturbation being adjusted by the hyper-parameter τ .



Fig. 6: Sensitivity analysis of hyper-parameter M in our method on BraTS2020 and 2017 ACDC datasets, where 10% labeled
images were used for model training. Dashed lines represent the performance of the strongest baselines.

Fig. 7: Sensitivity analysis of the loss weight λ2 in our
method on the BraTS2020 dataset, where 10% and 20% labeled
images were used for model training, respectively. Dashed lines
represent performance of the strongest baseline URPC.

Fig. 8 shows the DSC performance of our method trained
with different degrees of perturbation by τ on the BraTS2020
dataset. The results indicate that, in both semi-supervised
settings, the DSC performance with different τ values changes
little, suggesting that our method is robust to choice of the
hyper-parameter τ . Note that too small or too large τ values
lead to slightly worse performance, because a larger τ would
cause excessive perturbation to the features of the middle layer,
resulting in the loss of structural information and ultimately
leading to inaccurate segmentation results, while a smaller τ
may not introduce enough perturbation, resulting in overly
consistent outputs from the decoders that hinder the model’s
ability to evaluate uncertainty and perform high-precision
segmentation of edge regions.

E. Ablation study

To investigate the effect of different components in our
framework, we conduct detailed ablation study on BraTS2020
and 2017 ACDC. As shown in Table II, the first row is a
UNet trained with only labeled data (first row), which is the
backbone of our framework. On the BraTS2020 dataset, as the
reconstruction head was integrated into the network (second

Fig. 8: Sensitivity analysis of τ in our method on the
BraTS2020 dataset, where 10% and 20% labeled images were
used in model training, respectively. Dashed lines represent
performance of the strongest baseline URPC.

row), such joint learning improves segmentation results by
0.24% in DSC. We then employed the proposed feature-level
perturbation module to the UNet (third row), which significantly
improves the performance by 6.17% in DSC. While the
reconstruction head and feature-level perturbation module are
introduced into the framework simultaneously (fourth row),
the DSC remarkably increases by 6.79% compared with the
UNet. As the feature-perturbed consistency is adapted to the
framework (last row), the DSC value reaches 84.83%. Similar
performance improvement by each framework component was
observed on the 2017 ACDC dataset (Table II, right half).

F. Effects of different perturbation methods

One crucial aspect of consistency training is the applica-
tion of perturbations to the feature representation at certain
hidden layer. To investigate the effects of adopted feature
perturbation strategy in our method on model performance,
three additional feature perturbation strategies, namely F-
Noise [36], F-Drop [36], and Spatial Dropout [37] were used
to replace the perturbation strategy in our method. Figure 9
demonstrates the segmentation performance based on different
feature perturbation strategies. It is clear that the perturbation



TABLE II: Ablation study of our method on BraTS2020 and 2017 ACDC datasets, where 10% labeled images were used for
model training. Seg, FPC, FLPM and Rec denote the segmentation head, feature-perturbed consistency, feature-level perturbation
module and reconstruction head, respectively.

Seg Rec FLPM FPC BraTS2020 (3D) 2017 ACDC (2D)
DSC(%) ↑ 95HD(mm) ↓ ASD(voxel) ↓ DSC(%) ↑ 95HD(mm) ↓ ASD(voxel) ↓

✓ 77.79 15.26 5.34 79.71 7.54 4.73
✓ ✓ 78.03 14.52 5.07 79.98 7.12 4.41
✓ ✓ 83.96 11.01 3.25 86.35 5.13 1.57
✓ ✓ ✓ 84.58 10.92 3.16 87.15 5.06 1.42
✓ ✓ ✓ 84.69 11.07 3.20 87.36 5.09 1.51
✓ ✓ ✓ ✓ 84.83 10.79 3.07 87.52 4.96 1.33

strategy in our method yields the highest DSC value in
both semi-supervised learning settings. It is noteworthy that
when employing the three alternative feature-level perturbation
strategies, multiple forward computations are necessary in
order to obtain multiple prediction results. Therefore, additional
computational overhead is required in these strategies compared
to the perturbation strategy in our method.
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Fig. 9: Segmentation performance with different perturbation
strategies on the BraTS2020 dataset, where 10% and 20%
labeled images were used for model training, respectively.

G. Limitations and further work
Despite the superior performance of our framework in the

context of semi-supervised medical image segmentation, the
current perturbation strategy, which is based on mini-batch
images, has the potential to be extended to encompass the
entire dataset. There is also merit in exploring a wider range of
model architectures for novel tasks, as this has the potential to
enhance the generation of meaningful semantic perturbations
within the model. Besides, here we only investigate the
feature-level perturbations, while the conventional data-level
perturbations could also be effective and combined together
with the feature-level perturbations. Other future work includes
investigating more efficient feature-level perturbation strategies
for adapting different segmentation tasks and validating the
proposed framework with larger and more diverse segmentation
tasks.

IV. CONCLUSION

In this paper, we propose a novel and efficient semi-
supervised framework with feature-level perturbations for med-

ical image segmentation. In contrast to previous methods, our
method leverages more information from unlabeled images at
the feature level to facilitate effective segmentation and promote
stable network learning. Based on a dual-task architecture,
our reconstruction network enforces the encoder to maintain
more semantic information for the segmentation branch to
perform stably. To efficiently leverage the abundant information
naturally inherited in the unlabeled data, we employ a feature-
level perturbation module. A feature-perturbed consistency is
introduced to leverage reliable information from unlabeled
images and further improve the model performance. Extensive
experimental results demonstrate the feasibility and superiority
of our framework, especially around the boundary regions of
lesions. The applications of our framework to more medical
image segmentation tasks will be explored in future work.
Data Use Declaration: Our experimental data were col-
lected from open source datasets. The BraTS2020 can be
downloaded at: https://www.med.upenn.edu/cbica/brats2020/
data.html, and the 2017 ACDC dataset is available at: https:
//humanheart-project.creatis.insa-lyon.fr/database/#
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